نوع مقاله : مقاله مروری

نویسندگان

1 کمیته تحقیقات دانشجویی، دانشگاه علوم پزشکی شیراز

2 گروه علوم آزمایشگاهی، دانشکده پیراپزشکی، دانشگاه علوم پزشکی شیراز

3 گروه فارماکولوژی، دانشکده پزشکی، دانشگاه علوم پزشکی شیراز

10.30476/smsj.2026.106607.1629

چکیده

داروهای ضد ویروس فعلی با مشکلات متعددی مانند نیمه‌عمر کوتاه، حلالیت ضعیف در آب، عملکرد غیراختصاصی و عوارض جانبی فراوان همراه هستند. علاوه بر این، ظهور پدیده مقاومت دارویی و عدم پاسخ‌دهی کافی ویروس‌ها به داروهای ضد ویروس نیز از جمله مسائلی است که درمان عفونت‌های ویروسی را با چالش‌های زیادی روبه‌رو کرده است. مجموعه این عوامل سبب افزایش نیاز به استراتژی‌های نوین درمانی گردیده است. در این زمینه، فناوری نانو می‌تواند به‌عنوان یک راه حل نویدبخش مطرح شود. مطالعه مروری حاضر، بر اساس بررسی مقالات مرتبط با کاربرد فناوری نانو در پیشگیری، تشخیص و درمان بیماری‌های ویروسی که در فاصله بین سال‌های 2009 تا 2023 میلادی در مجلات علمی معتبر منتشر و در پایگاه‌های استنادی پابمد، گوگل اسکالر و وب آو ساینس نمایه شده‌اند، تدوین شده است. پژوهش‌های اخیر نشان داده‌اند که نانوحامل‌های دارویی، انتقال دارو به هدف مورد نظر را آسان نموده‌اند. نانو ذراتی مانند ذرات کوانتومی طلا، روی، پلاتین و پالادیوم باعث افزایش حساسیت و سرعت تشخیص ویروس‌ها شده‌اند. همچنین استفاده از نانو حامل‌های دارویی سبب رفع محدودیت‌های فیزیکوشیمیایی داروهای ضد ویروس، کاهش میزان سمیت و عوارض جانبی، افزایش عملکرد انتخابی (عدم تأثیر بر سلول‌های انسانی) و بهبود اثربخشی و فعالیت ضد ویروسی آن‌ها گردیده است. 

تازه های تحقیق

Maryam Tayebi (Google Scholar)

Maryam Motevasel (Google Scholar)

کلیدواژه‌ها

  1. Salavatiha Z, Kiani SJ, Tavakoli A, Niya MHK, Javan A, Safaie Z, et al. Molecular Investigation of Seven Respiratory Viruses in Patients with Acute Respiratory Tract Infections. International Journal of Medical Laboratory. 2024;11(1):45-53.
  2. Pradhan D, Biswasroy P, Goyal A, Ghosh G, Rath G. Recent Advancement in Nanotechnology-Based Drug Delivery System Against Viral Infections. AAPS PharmSciTech. 2021;22(1):47.
  3. Chakravarty M, Vora A. Nanotechnology-based antiviral therapeutics. Drug Deliv Transl Res. 2021;11(3):748-87.
  4. Hie B, Zhong ED, Berger B, Bryson B. Learning the language of viral evolution and escape. Science. 2021;371(6526):284-8.
  5. Sjogren MH. Prevention of hepatitis B in nonresponders to initial hepatitis B virus vaccination. Am J Med. 2005;118 Suppl 10A:34S-9S.
  6. Strasfeld L, Chou S. Antiviral drug resistance: mechanisms and clinical implications. Infect Dis Clin North Am. 2010;24(2):413-37.
  7. Singh L, Kruger HG, Maguire GEM, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis. 2017;4(4):105-31.
  8. Puri A, Loomis K, Smith B, Lee JH, Yavlovich A, Heldman E, et al. Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit Rev Ther Drug Carrier Syst. 2009;26(6):523-80.
  9. Mahajan SD, Aalinkeel R, Law WC, Reynolds JL, Nair BB, Sykes DE, et al. Anti-HIV-1 nanotherapeutics: promises and challenges for the future. Int J Nanomedicine. 2012;7:5301-14.
  10. Gagliardi M. Biomimetic and bioinspired nanoparticles for targeted drug delivery. Ther Deliv. 2017;8(5):289-99.
  11. Bowman MC, Ballard TE, Ackerson CJ, Feldheim DL, Margolis DM, Melander C. Inhibition of HIV fusion with multivalent gold nanoparticles. J Am Chem Soc. 2008;130(22):6896-7.
  12. Mallipeddi R, Rohan LC. Progress in antiretroviral drug delivery using nanotechnology. Int J Nanomedicine. 2010;5:533-47.
  13. Wang W, Guo Z, Chen Y, Liu T, Jiang L. Influence of generation 2-5 of PAMAM dendrimer on the inhibition of Tat peptide/ TAR RNA binding in HIV-1 transcription. Chem Biol Drug Des. 2006;68(6):314-8.
  14. Ratan ZA, Mashrur FR, Chhoan AP, Shahriar SM, Haidere MF, Runa NJ, et al. Silver Nanoparticles as Potential Antiviral Agents. Pharmaceutics. 2021;13(12):2034.
  15. Nayak D, Boxi A, Ashe S, Thathapudi NC, Nayak B. Stavudine loaded gelatin liposomes for HIV therapy: Preparation, characterization and in vitro cytotoxic evaluation. Mater Sci Eng C Mater Biol Appl. 2017;73:406-16.
  16. Cheng R, Zhu F, Huang M, Zhang Q, Yan HH, Zhao XH, et al. "Hepatitis virus indicator"----the simultaneous detection of hepatitis B and hepatitis C viruses based on the automatic particle enumeration. Biosens Bioelectron. 2022;202:114001.
  17. Chen H, Park SG, Choi N, Moon JI, Dang H, Das A, et al. SERS imaging-based aptasensor for ultrasensitive and reproducible detection of influenza virus A. Biosens Bioelectron. 2020;167:112496.
  18. Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, et al. Nanoparticle vaccines. Vaccine. 2014;32(3):327-37.
  19. Lara HH, Garza-Trevino EN, Ixtepan-Turrent L, Singh DK. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnology. 2011;9:30.
  20. Szymanska E, Orlowski P, Winnicka K, Tomaszewska E, Baska P, Celichowski G, et al. Multifunctional Tannic Acid/Silver Nanoparticle-Based Mucoadhesive Hydrogel for Improved Local Treatment of HSV Infection: In Vitro and In Vivo Studies. Int J Mol Sci. 2018;19(2).
  21. Huy TQ, Hien Thanh NT, Thuy NT, Chung PV, Hung PN, Le AT, et al. Cytotoxicity and antiviral activity of electrochemical - synthesized silver nanoparticles against poliovirus. J Virol Methods. 2017;241:52-7.
  22. Kerry RG, Malik S, Redda YT, Sahoo S, Patra JK, Majhi S. Nano-based approach to combat emerging viral (NIPAH virus) infection. Nanomedicine. 2019;18:196-220.
  23. Ahmed SR, Kim J, Suzuki T, Lee J, Park EY. Detection of influenza virus using peroxidase-mimic of gold nanoparticles. Biotechnol Bioeng. 2016;113(10):2298-303.
  24. Kim H, Park M, Hwang J, Kim JH, Chung DR, Lee KS, et al. Development of Label-Free Colorimetric Assay for MERS-CoV Using Gold Nanoparticles. ACS Sens. 2019;4(5):1306-12.
  25. Ghaffari H, Tavakoli A, Moradi A, Tabarraei A, Bokharaei-Salim F, Zahmatkeshan M, et al. Inhibition of H1N1 influenza virus infection by zinc oxide nanoparticles: another emerging application of nanomedicine. J Biomed Sci. 2019;26(1):70.
  26. Sirelkhatim A, Mahmud S, Seeni A, Kaus NHM, Ann LC, Bakhori SKM, et al. Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism. Nanomicro Lett. 2015;7(3):219-42.
  27. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, Williamson BN, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N Engl J Med. 2020;382(16):1564-7.
  28. Sportelli MC, Longano D, Bonerba E, Tantillo G, Torsi L, Sabbatini L, et al. Electrochemical Preparation of Synergistic Nanoantimicrobials. Molecules. 2019;25(1):49.
  29. Bae SW, Tan W, Hong JI. Fluorescent dye-doped silica nanoparticles: new tools for bioapplications. Chem Commun (Camb). 2012;48(17):2270-82.
  30. de Souza ESJM, Hanchuk TD, Santos MI, Kobarg J, Bajgelman MC, Cardoso MB. Viral Inhibition Mechanism Mediated by Surface-Modified Silica Nanoparticles. ACS Appl Mater Interfaces. 2016;8(26):16564-72.
  31. Liang JJ, Wei JC, Lee YL, Hsu SH, Lin JJ, Lin YL. Surfactant-modified nanoclay exhibits an antiviral activity with high potency and broad spectrum. J Virol. 2014;88(8):4218-28.
  32. Chunduri LAA, Kurdekar A, Haleyurgirisetty MK, Bulagonda EP, Kamisetti V, Hewlett IK. Femtogram Level Sensitivity achieved by Surface Engineered Silica Nanoparticles in the Early Detection of HIV Infection. Sci Rep. 2017;7(1):7149.
  33. Tompa DR, Immanuel A, Srikanth S, Kadhirvel S. Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs. Int J Biol Macromol. 2021;172:524-41.
  34. Chen X, Chen X, Chen W, Ma X, Huang J, Chen R. Extended peginterferon alfa-2a (Pegasys) therapy in Chinese patients with HBeAg-negative chronic hepatitis B. J Med Virol. 2014;86(10):1705-13.
  35. Hellmuth J, Valcour V, Spudich S. CNS reservoirs for HIV: implications for eradication. J Virus Erad. 2015;1(2):67-71.
  36. Wen L, Lin Y, Zheng ZH, Zhang ZL, Zhang LJ, Wang LY, et al. Labeling the nucleocapsid of enveloped baculovirus with quantum dots for single-virus tracking. Biomaterials. 2014;35(7):2295-301.
  37. Chakravarty M, Vora A. Nanotechnology-based antiviral therapeutics. Drug Deliv Transl Res. 2021;11(3):748-87.
  38. Duan L, Yan Y, Liu J, Wang B, Li P, Hu Q, et al. Target delivery of small interfering RNAs with vitamin E-coupled nanoparticles for treating hepatitis C. Sci Rep. 2016;6:24867.
  39. Adesina SK, Akala EO. Nanotechnology Approaches for the Delivery of Exogenous siRNA for HIV Therapy. Mol Pharm. 2015;12(12):4175-87.
  40. Ogunwuyi O, Kumari N, Smith KA, Bolshakov O, Adesina S, Gugssa A, et al. Antiretroviral Drugs-Loaded Nanoparticles Fabricated by Dispersion Polymerization with Potential for HIV/AIDS Treatment. Infect Dis (Auckl). 2016;9:21-32.
  41. Kuo YC, Chung CY. Transcytosis of CRM197-grafted polybutylcyanoacrylate nanoparticles for delivering zidovudine across human brain-microvascular endothelial cells. Colloids Surf B Biointerfaces. 2012;91:242-9.
  42. Ringsdorf H. Structure and properties of pharmacologically active polymers. J Polym Sci: Polym Symp. 1975;51(1);135-53.
  43. Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci China Life Sci. 2020;63(3):457-60.
  44. Lei Y, Zhang J, Schiavon CR, He M, Chen L, Shen H, et al. SARS-CoV-2 Spike Protein Impairs Endothelial Function via Downregulation of ACE 2. Circ Res. 2021;128(9):1323-6.
  45. Chiodo F, Marradi M, Calvo J, Yuste E, Penades S. Glycosystems in nanotechnology: Gold glyconanoparticles as carrier for anti-HIV prodrugs. Beilstein J Org Chem. 2014;10:1339-46.
  46. Jaramillo-Ruiz D, De La Mata FJ, Gomez R, Correa-Rocha R, Munoz-Fernandez MA. Nanotechnology as a New Therapeutic Approach to Prevent the HIV-Infection of Treg Cells. PLoS One. 2016;11(1):e0145760.
  47. Parboosing R, Chonco L, de la Mata FJ, Govender T, Maguire GE, Kruger HG. Potential inhibition of HIV-1 encapsidation by oligoribonucleotide-dendrimer nanoparticle complexes. Int J Nanomedicine. 2017;12:317-25.
  48. Jayant RD, Atluri VS, Agudelo M, Sagar V, Kaushik A, Nair M. Sustained-release nanoART formulation for the treatment of neuroAIDS. Int J Nanomedicine. 2015;10:1077-93.
  49. Wang J, Feng SS, Wang S, Chen ZY. Evaluation of cationic nanoparticles of biodegradable copolymers as siRNA delivery system for hepatitis B treatment. Int J Pharm. 2010;400(1-2):194-200.
  50. Lee MY, Yang JA, Jung HS, Beack S, Choi JE, Hur W, et al. Hyaluronic acid-gold nanoparticle/interferon alpha complex for targeted treatment of hepatitis C virus infection. ACS Nano. 2012;6(11):9522-31.
  51. Wang Z, Liu H, Yang SH, Wang T, Liu C, Cao YC. Nanoparticle-based artificial RNA silencing machinery for antiviral therapy. Proc Natl Acad Sci U S A. 2012;109(31):12387-92.
  52. Shafagati N, Patanarut A, Luchini A, Lundberg L, Bailey C, Petricoin E, 3rd, et al. The use of Nanotrap particles for biodefense and emerging infectious disease diagnostics. Pathog Dis. 2014;71(2):164-76.
  53. Hendricks GL, Weirich KL, Viswanathan K, Li J, Shriver ZH, Ashour J, et al. Sialylneolacto-N-tetraose c (LSTc)-bearing liposomal decoys capture influenza A virus. J Biol Chem. 2013;288(12):8061-73.
  54. Levina AS, Repkova MN, Mazurkova NA, Zarytova VF. Nanoparticle-mediated nonviral DNA delivery for effective inhibition of influenza A viruses in cells. IEEE Transactions on Nanotechnology. 2016;15(2):248-54.
  55. Singh L, Kruger HG, Maguire GEM, Govender T, Parboosing R. The role of nanotechnology in the treatment of viral infections. Ther Adv Infect Dis. 2017;4(4):105-31.
  56. Dronina J, Samukaite-Bubniene U, Ramanavicius A. Advances and insights in the diagnosis of viral infections. J Nanobiotechnology. 2021;19(1):348.
  57. Vermisoglou E, Panacek D, Jayaramulu K, Pykal M, Frebort I, Kolar M, et al. Human virus detection with graphene-based materials. Biosens Bioelectron. 2020;166:112436.
  58. Zhang H, Liu L, Fu X, Zhu Z. Microfluidic beads-based immunosensor for sensitive detection of cancer biomarker proteins using multienzyme-nanoparticle amplification and quantum dots labels. Biosens Bioelectron. 2013;42:23-30.
  59. Ackerman CM, Myhrvold C, Thakku SG, Freije CA, Metsky HC, Yang DK, et al. Massively multiplexed nucleic acid detection with Cas13. Nature. 2020;582(7811):277-82.
  60. Freije CA, Sabeti PC. Detect and destroy: CRISPR-based technologies for the response against viruses. Cell Host Microbe. 2021;29(5):689-703.
  61. Zhao Q, Piao J, Peng W, Wang J, Gao W, Wu X, et al. A Metal Chelator as a Plasmonic Signal-Generation Superregulator for Ultrasensitive Colorimetric Bioassays of Disease Biomarkers. Adv Sci (Weinh). 2018;5(7):1800295.
  62. Hou J, Qian X, Xu Y, Guo Z, Thierry B, Yang CT, et al. Rapid and reliable ultrasensitive detection of pathogenic H9N2 viruses through virus-binding phage nanofibers decorated with gold nanoparticles. Biosens Bioelectron. 2023;237:115423.
  63. Goldenthal KL, Midthun K, Zoon KC. Control of Viral Infections and Diseases. In: Baron S, editor. Medical Microbiology. Galveston (TX): University of Texas Medical Branch at Galveston; 1996.
  64. Kim M-G, Park JY, Shon Y, Kim G, Shim G, Oh Y-K. Nanotechnology and vaccine development. Asian Journal of Pharmaceutical Sciences. 2014;9(5):227-35.
  65. Misumi S, Masuyama M, Takamune N, Nakayama D, Mitsumata R, Matsumoto H, et al. Targeted delivery of immunogen to primate m cells with tetragalloyl lysine dendrimer. J Immunol. 2009;182(10):6061-70.
  66. Raghuwanshi D, Mishra V, Suresh MR, Kaur K. A simple approach for enhanced immune response using engineered dendritic cell targeted nanoparticles. Vaccine. 2012;30(50):7292-9.
  67. Lepenies B, Lee J, Sonkaria S. Targeting C-type lectin receptors with multivalent carbohydrate ligands. Adv Drug Deliv Rev. 2013;65(9):1271-81.
  68. Qasim M, Lim DJ, Park H, Na D. Nanotechnology for diagnosis and treatment of infectious diseases. J Nanosci Nanotechnol. 2014;14(10):7374-87.
  69. Huh AJ, Kwon YJ. "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J Control Release. 2011;156(2):128-45.
  70. Copland MJ, Rades T, Davies NM, Baird MA. Lipid based particulate formulations for the delivery of antigen. Immunol Cell Biol. 2005;83(2):97-105.
  71. Lebre F, Borchard G, Faneca H, Pedroso de Lima MC, Borges O. Intranasal Administration of Novel Chitosan Nanoparticle/DNA Complexes Induces Antibody Response to Hepatitis B Surface Antigen in Mice. Mol Pharm. 2016;13(2):472-82.
  72. Laing P, Bacon A, McCormack B, Gregoriadis G, Frisch B, Schuber F. The 'co-delivery' approach to liposomal vaccines: application to the development of influenza-A and hepatitis-B vaccine candidates. J Liposome Res. 2006;16(3):229-35.
  73. Herzog C, Hartmann K, Kunzi V, Kursteiner O, Mischler R, Lazar H, et al. Eleven years of Inflexal V-a virosomal adjuvanted influenza vaccine. Vaccine. 2009;27(33):4381-7.
  74. Giezeman KM, Nauta J, de Bruijn IA, Palache AM. Trivalent inactivated subunit influenza vaccine Influvac: 25-Year experience of safety and immunogenicity. Vaccine. 2009;27(18):2414-7.
  75. Tao W, Ziemer KS, Gill HS. Gold nanoparticle-M2e conjugate coformulated with CpG induces protective immunity against influenza A virus. Nanomedicine (Lond). 2014;9(2):237-51.
  76. Tan M, Jiang X. Norovirus P particle: a subviral nanoparticle for vaccine development against norovirus, rotavirus and influenza virus. Nanomedicine (Lond). 2012;7(6):889-97.
  77. Galloway AL, Murphy A, DeSimone JM, Di J, Herrmann JP, Hunter ME, et al. Development of a nanoparticle-based influenza vaccine using the PRINT technology. Nanomedicine. 2013;9(4):523-31.
  78. Kanekiyo M, Wei CJ, Yassine HM, McTamney PM, Boyington JC, Whittle JR, et al. Self-assembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature. 2013;499(7456):102-6.
  79. Neuhaus V, Chichester JA, Ebensen T, Schwarz K, Hartman CE, Shoji Y, et al. A new adjuvanted nanoparticle-based H1N1 influenza vaccine induced antigen-specific local mucosal and systemic immune responses after administration into the lung. Vaccine. 2014;32(26):3216-22.
  80. Sawaengsak C, Mori Y, Yamanishi K, Mitrevej A, Sinchaipanid N. Chitosan nanoparticle encapsulated hemagglutinin-split influenza virus mucosal vaccine. AAPS PharmSciTech. 2014;15(2):317-25.
  81. Chen H, Wang L, Yeh J, Wu X, Cao Z, Wang YA, et al. Reducing non-specific binding and uptake of nanoparticles and improving cell targeting with an antifouling PEO-b-PgammaMPS copolymer coating. Biomaterials. 2010;31(20):5397-407.
  82. Yu SS, Lau CM, Thomas SN, Jerome WG, Maron DJ, Dickerson JH, et al. Size- and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages. Int J Nanomedicine. 2012;7:799-813.
  83. Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53(2):283-318.
  84. Fischer HC, Chan WC. Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol. 2007;18(6):565-71.
  85. De Jong WH, Borm PJ. Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine. 2008;3(2):133-49.
  86. Lei R, Wu C, Yang B, Ma H, Shi C, Wang Q, et al. Integrated metabolomic analysis of the nano-sized copper particle-induced hepatotoxicity and nephrotoxicity in rats: a rapid in vivo screening method for nanotoxicity. Toxicol Appl Pharmacol. 2008;232(2):292-301.
  87. Hu YL, Gao JQ. Potential neurotoxicity of nanoparticles. Int J Pharm. 2010;394(1-2):115-21.
  88. Yoshida S, Hiyoshi K, Ichinose T, Takano H, Oshio S, Sugawara I, et al. Effect of nanoparticles on the male reproductive system of mice. Int J Androl. 2009;32(4):337-42.
  89. Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40(3):1647-71.