نوع مقاله : Review Article

نویسندگان

1 بخش هماتولوژی و بانک خون، گروه علوم آزمایشگاهی پزشکی، دانشکده پیراپزشکی، دانشگاه علوم پزشکی شیراز، شیراز، ایران

2 مرکز تحقیقات علوم و فناوری آزمایشگاهی تشخیصی، دانشکده پیراپزشکی، دانشگاه علوم پزشکی شیراز، شیراز، ایران

10.30476/smsj.2025.106508.1621

چکیده

مصرف بیش از حد فروکتوز در رژیم غذایی انسان ارتباط مهمی با افزایش بیماری‌های متابولیک از قبیل چاقی، دیابت نوع 2، بیماری‌های قلبی، بیماری‌های خود ایمنی و انواع سرطان‌ها دارد. شیوع اختلالات متابولیک در جهان و از جمله ایران نشان‌دهنده افزایش رو به رشد این بیماری‌ها است. این مقاله مروری با استفاده از جستجوی جامع در پایگاه‌های اطلاعاتی گوگل اسکالر، پابمد، ساینس دایرکت، ریسرچ گیت و کلمات کلیدی کلمات کلیدی فروکتوز، بیماری‌های متابولیک، شربت ذرت با فروکتوز بالا، زنولین و میکروبیوم در بازه زمانی 1979 تا 2025 نگاشته شده است. مطالعات اخیر نشان می‌دهد که فروکتوز با دوز پایین عمدتاً در روده کوچک متابولیزه می‌شود، درحالی‌که مصرف بیش از حد فروکتوز، فروکتوز اضافی را از روده خارج و آن را در کبد متابولیزه می‌نماید. رژیم غذایی سرشار از فروکتوز می‌تواند با تأثیر روی زنولین و از بین رفتن پروتئین‌های اتصال محکم در بافت روده کوچک و تغییر ترکیب میکروبی روده، موجب افزایش نفوذپذیری روده و اندوتوکسین گردش خون گردد. این تغییرات با افزایش اندوتوکسین باکتریایی و ایجاد التهاب در کبد و بافت‌های هدف با سرکوب مسیر سیگنالینگ انسولین می‌تواند منجر به مقاومت به انسولین و بروز بیماری‌های متابولیک مختلف گردد. همچنین، افزایش زنولین با بروز بیماری‌های متابولیک ارتباط معناداری نشان می‌دهد؛ بنابراین، به حداقل رساندن مصرف نوشیدنی‌ها و غذاهای شیرین شده با فروکتوز، فاکتوری کلیدی در سبک زندگی سالم و پیشگیری از بیماری‌های متابولیک است.

تازه های تحقیق

Tahereh Kalantari (Google Scholar)

 

کلیدواژه‌ها

  1. Chen Y, Lin H, Qin L, Lu Y, Zhao L, Xia M, et al. Fasting serum fructose levels are associated with risk of incident type 2 diabetes in middle-aged and older Chinese population. Diabetes Care. 2020;43(9):2217-25.
  2. Francey C, Cros J, Rosset R, Creze C, Rey V, Stefanoni N, et al. The extra-splanchnic fructose escape after ingestion of a fructose-glucose drink: an exploratory study in healthy humans using a dual fructose isotope method. Clin Nutr ESPEN. 2019;29:125-32.
  3. Starling S. Sugar-sweetened beverages decrease fat oxidation. Nat Rev Endocrinol. 2019;15(12):685.
  4. Hannou SA, Haslam DE, McKeown NM, Herman MA. Fructose metabolism and metabolic disease. J Clin Invest. 2018;128(2):545-55.
  5. Emerson H, Larimore LD. Diabetes mellitus: a contribution to its epidemiology based chiefly on mortality statistics. Arch Intern Med. 1924;34(5):585-630.
  6. Johnson RJ, Sanchez-Lozada LG, Andrews P, Lanaspa MA. Perspective: a historical and scientific perspective of sugar and its relation with obesity and diabetes. Adv Nutr. 2017;8(3):412-22.
  7. Hauri HP, Quaroni A, Isselbacher KJ. Biogenesis of intestinal plasma membrane: posttranslational route and cleavage of sucrase-isomaltase. Proc Natl Acad Sci U S A. 1979;76(10):5183-6.
  8. Kit BK, Fakhouri TH, Park S, Nielsen SJ, Ogden CL. Trends in sugar-sweetened beverage consumption among youth and adults in the United States: 1999-2010. Am J Clin Nutr. 2013;98(1):180-8.
  9. DeSalvo KB, Olson R, Casavale KO. Dietary guidelines for Americans. JAMA. 2016;315(5):457-8.
  10. Ouyang X, Cirillo P, Sautin Y, McCall S, Bruchette JL, Diehl AM, et al. Fructose consumption as a risk factor for non-alcoholic fatty liver disease. J Hepatol. 2008;48(6):993-9.
  11. Das UN. Sucrose, fructose, glucose, and their link to metabolic syndrome and cancer. Nutrition. 2015;31(1):249-57.
  12. Fasano A. Zonulin and its regulation of intestinal barrier function: the biological door to inflammation, autoimmunity, and cancer. Physiol Rev. 2011;91(1):151-75.
  13. Qi X, Tester RF. Fructose, galactose and glucose—in health and disease. Clin Nutr ESPEN. 2019;33:18-28.
  14. Geidl-Flueck B, Gerber PA. Insights into the hexose liver metabolism—glucose versus fructose. Nutrients. 2017;9(9):1026.
  15. Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am J Clin Nutr. 2004;79(4):537-43.
  16. Malik VS, Popkin BM, Bray GA, Despres JP, Hu FB. Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation. 2010;121(11):1356-64.
  17. Ma J, McKeown NM, Hwang SJ, Hoffmann U, Jacques PF, Fox CS. Sugar-sweetened beverage consumption is associated with change of visceral adipose tissue over 6 years of follow-up. Circulation. 2016;133(4):370-7.
  18. Campos VC, Tappy L. Physiological handling of dietary fructose-containing sugars: implications for health. Int J Obes (Lond). 2016;40 Suppl 1:S6-11.
  19. Gerbe F, van Es JH, Makrini L, Brulin B, Mellitzer G, Robine S, et al. Distinct ATOH1 and Neurog3 requirements define tuft cells as a new secretory cell type in the intestinal epithelium. J Cell Biol. 2011;192(5):767-80.
  20. Malmberg EK, Pelaseyed T, Petersson AC, Seidler UE, De Jonge H, Riordan JR, et al. The C-terminus of the transmembrane mucin MUC17 binds to the scaffold protein PDZK1 that stably localizes it to the enterocyte apical membrane in the small intestine. Biochem J. 2008;410(2):283-9.
  21. Mueckler M, Thorens B. The SLC2 (GLUT) family of membrane transporters. Mol Aspects Med. 2013;34(2-3):121-38.
  22. Guney C, Bal NB, Akar F. The impact of dietary fructose on gut permeability, microbiota, abdominal adiposity, insulin signaling and reproductive function. Heliyon. 2023;9(8):e18896.
  23. Truswell AS, Seach JM, Thorburn AW. Incomplete absorption of pure fructose in healthy subjects and the facilitating effect of glucose. Am J Clin Nutr. 1988;48(6):1424-30.
  24. Jang C, Hui S, Lu W, Cowan AJ, Morscher RJ, Lee G, et al. The small intestine converts dietary fructose into glucose and organic acids. Cell Metab. 2018;27(2):351-61.
  25. Diggle CP, Shires M, Leitch D, Brooke D, Carr IM, Markham AF, et al. Ketohexokinase: expression and localization of the principal fructose-metabolizing enzyme. J Histochem Cytochem. 2009;57(8):763-74.
  26. Veres-Szekely A, Szasz C, Pap D, Szebeni B, Bokrossy P, Vannay A. Zonulin as a potential therapeutic target in microbiota-gut-brain axis disorders: encouraging results and emerging questions. Int J Mol Sci. 2023;24(8):7548.
  27. Staltner R, Burger K, Baumann A, Bergheim I. Fructose: a modulator of intestinal barrier function and hepatic health? Eur J Nutr. 2023;62(8):3113-24.
  28. Sturgeon C, Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers. 2016;4(4):e1251384.
  29. V, Ferraris RP. The role of fructose transporters in diseases linked to excessive fructose intake. J Physiol. 2013;591(2):401-14.
  30. Camara-Lemarroy CR, Silva C, Greenfield J, Liu WQ, Metz LM, Yong VW. Biomarkers of intestinal barrier function in multiple sclerosis are associated with disease activity. Mult Scler. 2020;26(11):1340-50.
  31. Carratu R, Secondulfo M, de Magistris L, Iafusco D, Urio A, Carbone MG, et al. Altered intestinal permeability to mannitol in diabetes mellitus type I. J Pediatr Gastroenterol Nutr. 1999;28(3):264-9.
  32. Nakagawa T, Lanaspa MA, Millan IS, Fini M, Rivard CJ, Sanchez-Lozada LG, et al. Fructose contributes to the Warburg effect for cancer growth. Cancer Metab. 2020;8:16.
  33. Haluszka D, Lorincz K, Kiss N, Szipocs R, Kuroli E, Gyongyosi N, et al. Diet-induced obesity skin changes monitored by in vivo SHG and ex vivo CARS microscopy. Biomed Opt Express. 2016;7(11):4480-9.
  34. Softic S, Gupta MK, Wang GX, Fujisaka S, O’Neill BT, Rao TN, et al. Divergent effects of glucose and fructose on hepatic lipogenesis and insulin signaling. J Clin Invest. 2017;127(11):4059-74.
  35. Balakumar M, Raji L, Prabhu D, Sathishkumar C, Prabu P, Mohan V, et al. High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress. Mol Cell Biochem. 2016;423(1-2):93-104.
  36. Lim JS, Mietus-Snyder M, Valente A, Schwarz JM, Lustig RH. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nat Rev Gastroenterol Hepatol. 2010;7(5):251-64.
  37. Fowle-Grider R, Rowles JL, Shen I, Wang Y, Schwaiger-Haber M, Dunham AJ, et al. Dietary fructose enhances tumour growth indirectly via interorgan lipid transfer. Nature. 2024;636(8043):737-44.
  38. Chen X, Yang M, Wang L, Tu J, Yuan X. Fructose metabolism in cancer: molecular mechanisms and therapeutic implications. Int J Med Sci. 2025;22(11):2852-76.
  39. Currie CJ, Poole CD, Jenkins-Jones S, Gale EA, Johnson JA, Morgan CL. Mortality after incident cancer in people with and without type 2 diabetes: impact of metformin on survival. Diabetes Care. 2012;35(2):299-304.
  40. Genkinger JM, Spiegelman D, Anderson KE, Bernstein L, van den Brandt PA, Calle EE, et al. A pooled analysis of 14 cohort studies of anthropometric factors and pancreatic cancer risk. Int J Cancer. 2011;129(7):1708-17.
  41. Hwang IS, Huang WC, Wu JN, Shian LR, Reaven GM. Effect of fructose-induced hypertension on the renin-angiotensin-aldosterone system and atrial natriuretic factor. Am J Hypertens. 1989;2(6 Pt 1):424-7.
  42. Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, et al. The microbiota-gut-brain axis. Physiol Rev. 2019;99(4):1877-2013.
  43. Fasano A. All disease begins in the (leaky) gut: role of zonulin-mediated gut permeability in the pathogenesis of some chronic inflammatory diseases. F1000Res. 2 as: F1000 Faculty Rev-69.
  44. Li JM, Yu R, Zhang LP, Wen SY, Wang SJ, Zhang XY, et al. Dietary fructose-induced gut dysbiosis promotes mouse hippocampal neuroinflammation: a benefit of short-chain fatty acids. Microbiome. 2019;7(1):98.
  45. Johnson RJ, Stenvinkel P, Andrews P, Sanchez-Lozada LG, Nakagawa T, Gaucher E, et al. Fructose metabolism as a common evolutionary pathway of survival associated with climate change, food shortage and droughts. J Intern Med. 2020;287(3):252-62.
  46. Righetti S, Medoro A, Graziano F, Mondazzi L, Martegani S, Chiappero F, et al. Effects of maltodextrin-fructose supplementation on inflammatory biomarkers and lipidomic profile following endurance running: a randomized placebo-controlled cross-over trial. Nutrients. 2024;16(18):3078.
  47. Rippe JM, Angelopoulos TJ. Fructose-containing sugars and cardiovascular disease. Adv Nutr. 2015;6(4):430-9.
  48. Tordoff MG, Alleva AM. Effect of drinking soda sweetened with aspartame or high-fructose corn syrup on food intake and body weight. Am J Clin Nutr. 1990;51(6):963-9.
  49. Chew NW, Ng CH, Tan DJH, Kong G, Lin C, Chin YH, et al. The global burden of metabolic disease: data from 2000 to 2019. Cell Metab. 2023;35(3):414-28.
  50. Noubiap JJ, Nansseu JR, Lontchi-Yimagou E, Nkeck JR, Nyaga UF, Ngouo AT, et al. Geographic distribution of metabolic syndrome and its components in the general adult population: a meta-analysis of global data from 28 million individuals. Diabetes Res Clin Pract. 2022;188:109924.
  51. Leitner BP, Siebel S, Akingbesote ND, Zhang X, Perry RJ. Insulin and cancer: a tangled web. Biochem J. 2022;479(5):583-607.
  52. Ferraris RP, Choe JY, Patel CR. Intestinal absorption of fructose. Annu Rev Nutr. 2018;38:41-67.
  53. Chávez-Rodríguez L, Escobedo-Calvario A, Jendrossek V, Matschke J, Busch M, Dünker N, et al. Fructose induces metabolic reprogramming in liver cancer cells, promoting aggressiveness and chemotherapy resistance. Explor Dig Dis. 2025;4:100572.
  54. Galderisi A, Giannini C, Van Name M, Caprio S. Fructose consumption contributes to hyperinsulinemia in adolescents with obesity through a GLP-1-mediated mechanism. J Clin Endocrinol Metab. 2019;104(8):3481-90.
  55. Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55-71.