نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری دانشکده علوم ورزشی، دانشگاه اصفهان، اصفهان، ایران

2 دانشیار گروه فیزیولوژی ورزشی، دانشکده علوم ورزشی، دانشگاه اصفهان- اصفهان، ایران

3 دکتری پژوهشی علوم بالینی، مرکز تحقیقات بیماری های متابولیک، بیمارستان امام حسین، دانشگاه علوم پزشکی اصفهان، اصفهان، ایران

چکیده

مقدمه: غلظت میکرو آراِن‌ای‌های سرمی با بروز بیماری‌های متابولیکی متعددی ازجمله چاقی، هایپرلیپیدمی و دیابت نوعِ دو، رابطه دارند. هدف کلی این پژوهش بررسی تغییرات mir146b متعاقب یک‌دوره مداخلات ورزشی در نوجوانان چاق یا دارای اضافه‌وزن است.
روش‌ها: در این مطالعه نیمه تجربی تعداد 30 دانش‌آموز پسر چاق و دارای اضافه‌وزن در بازه سنی13 تا 15 سال، بر اساس شاخص توده بدنی به شکل قابل دسترس انتخاب و در دو گروه تمرین‌های تناوبی شدید (شاخص توده بدنی 25/2±15/26 کیلوگرم/مترمربع) و مدرسه‌محور (شاخص توده بدنی 26/2±02/26 کیلوگرم/مترمربع) جای گرفتند. مداخلات تمرینی در طول 12 هفته و سه جلسه در هر هفته، پس از 10 تا 15 دقیقه گرم‌کردن اولیه انجام گردید و در پایان هر جلسه تمرینی 5 تا 10 دقیقه هم برای سردکردن بدن در نظر گرفته شد. برای استخراج miR146b گردش خون از دستگاه ریل تایم پی‌سی‌آر و برای اندازه‌گیری سطوح چربی از کیت‌های شرکت پارس آزمون و روش الایزا استفاده شد.
یافته‌ها: بیان miR146b در گروه تمرین‌های تناوبی شدید 88/46 درصد کاهش و در گروه تمرین‌های مدرسه‌محور نیز 05/62 درصد کاهش داشت، اما تفاوت معناداری بین دو گروه مشاهده نشد (836/0=p)، همچنین سطوح چربی در هر دو گروه بهبود یافت، اما در سطوح کلسترول (677/0=p)، تری‌گلیسرید (977/0=p)، LDL  (247/0=p) و HDL (977/0=p) تفاوت معناداری  بین گروه‌ها وجود نداشت.
نتیجه‌گیری: برای ایجاد تغییر در سطوح چربی و miR146b به‌عنوان نشانگر وضعیت پاتولوژیکی چاقی در کودکان و کاهش خطر ابتلا به انواع بیماری در بزرگسالی، می‌توان از هر دو تمرین مدرسه‌محور و تناوبی شدید استفاده کرد.

کلیدواژه‌ها

عنوان مقاله [English]

Changes in miR146b Following Different Exercise Interventions in Adolescents with Overweight and Obesity

نویسندگان [English]

  • Rasol Khalil Tahmasebi 1
  • Vazgen Minasian 2
  • Silva Hovsepian 3

1 PhD Candidate, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran,

2 Associate professor, department of Exercise Physiology, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran

3 MD, PhD, of Clinical Sciences, Metabolic Liver Diseases Research Center, Imam Hossein Children's Hospital, Isfahan University of Medical Sciences, Isfahan, Iran

چکیده [English]

Introduction: Serum microRNAs are associated with numerous metabolic diseases, including obesity, hyperlipidemia, and type 2 diabetes. This study aimed to identify the miR146b changes following different exercise training interventions in adolescents with overweight and obesity.
Methods: In this quasi-experimental study, 30 obese and overweight male adolescents aged 13-15 years were selected through the convenience sampling method based on body mass index (BMI) and assigned to two high-intensity interval training (HIIT) (Mean BMI: 26.15±2.25 kg/m2) and  school-based (SBE) (Mean BMI: 26.02±2.26 kg/m2) groups. Exercises in each group were performed for 12 weeks/ three weekly sessions after 10-15 minutes of initial warm-up. Moreover, at the end of each training session, 5-10 minutes were considered for cooling down. The circulating miR146b was extracted using a Real-Time PCR system. The subjects’ lipid profile was  measured by enzymatic methods, using certified commercial kits.
Results: The expression of miR146b in both training groups, HIIT and SBE, dropped around 46.88% vs. 62.05%, respectively, but there was no significant difference between groups (p=0.836). Lipid profile levels also improved in both HIIT and SBE groups, but there were no significant differences in the Cholesterol (p=0.677), Triglyceride (p=0.977), LDL (p=0.247), and HDL levels between the two groups (p=0.977).
Conclusion: The results showed that both school-based and high-intensity interval training can be used to modify lipid Profile and miR146b levels as an indicator of the pathological status of obesity in children and reduce the risk of disease in adulthood.

کلیدواژه‌ها [English]

  • Adolescent
  • Exercise
  • Interventions
  • miR146b
  • Obesity
  1. Mokdad A, Ford E, Bowman B, Dietz W, Vinicor F, Bales V. Prevalence of obesity, diabetes, and obesity-related health risk factors. Jama. 2003;289(1):76-9.
  2. Kraus W, Houmard J, Duscha B,
    Knetzger K, Wharton M, McCartney J. Effects of the amount and intensity of exercise on plasma lipoproteins. New England Journ of Medicine. 2002;347(19):1483-92.
  3. Ogden C, Carroll M, Curtin L, McDowell M, Tabak C, Flegal K. Prevalence of Overweight and obesity in the United States. Jama. 2006;295(13):1549-55.
  4. Watts K, Jones T, Davis E, Green D. Exercise training in obese children and adolescents’ current concepts. Sports Med. 2005;35(5):375-92.
  5. Horak M, Zlamal F, Iliev R, Kucera J, Cacek J, Svobodova L. Exercise-induced circulating microRNA changes in athletes in various training scenarios. PloS one. 2018;13 (1).
  6. Hwarg C, Wu Y, Chou C. Effect of aerobic interval training on exercise capacity and metabolic risk factors in people with cardiometabolic disorders: A meta-analysis. Journal of cardio pulmonary rehabilitation and prevention 2011;31(6):378-9.
  7. Stenevi-Lundgren S, Daly R, Karlsson M. A school-based exercise intervention program increases muscle strength in prepubertal boys. Int J Pediatr. 2010; (2010); 1-9.
  8. Verjans-Janssen S, van de Kolk I, Van Kann D, Kremers S, Gerards S. Effectiveness of school-based physical activity and nutrition interventions with direct parental involvement on children's BMI and energy balance- related behaviors - A systematic review. Plos One. 2018;13(9):1-24.
  9. Vu H N. School-based exercise interventions effectively increase bone mineralization in children and adolescents. Osteoporosis and Sarcopenia 2018;4:39-46.
  10. Francisco J, Orteg A, José M. MicroRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. Plos ONE. 2010;5(2):1-9.
  11. Sun W, JulieLi Y, Huang H, Shyy J,
    Chien S. microRNA: a master regulator of cellular processes for bioengineering systems. Annu Rev Biomed Eng. 2010;12:1-27.
  12. McClelland A, Kantharidis P. microRNA in the development of diabetic complications. Clin Sci. 2014;126:95-110.
  13. Xianwei C, Lianghui Y, Lijun Z, Xing W, Yahui Z, Yun L. Change in circulating microRNA profile of obese children indicates future risk of adult diabetes. Metabolism Clinical and Experimental. 2018; 7(8); 95-105.
  14. Chen l, Mei Dai Y, Bo Ji C, Yang L. MiR-146b is a regulator of human visceral preadipocyte proliferation and differentiation and its expression is altered in human obesity. Molecular and Cellular Endocrinology. 2014;393 (1-2):65-74.
  15. 15. Shi C, Zhu L, Chen X, Gu N, Chen L. IL-6 and TNF-α Induced Obesity-Related Inflammatory Response Through Transcriptional Regulation of miR-146b. Journal of Interferon & Cytokine Research. 2014;34.
  16. Martin H, Filip Z, Robert I, Jan K, Jan C. Exercise-induced circulating microRNA changes in athletes in various training scenarios. PLoS One. 2018;13 (1); 1-14.
  17. Parr E, Camera D, Burke L, Phillips S, Coffey V, Hawley J. Circulating microRNA responses between ‘high’ and ‘low’ responder’s responders to a 16-wk diet and exercise weight loss intervention. Plos One. 2016;11(4); 1-14.
  18. Gomes G, Fernandes T, Soci U, Silveira A, Barretti D, Negrão C, et al. Obesity Downregulates MicroRNA-126 Inducing Capillary Rarefaction in Skeletal Muscle: Effects of Aerobic Exercise Training. Oxidative medicine and cellular longevity. 2017; (5):1-9.
  19. Lu K, Cooper D, Haddad F, Radom-Aizik S. Four Months of a School-Based Exercise Program Improved Aerobic Fitness and Clinical Outcomes in a Low-SES Population of Normal Weight and Overweight/Obese Children with Asthma. Front Pediatr. 2018;6:380.
  20. Minasian V, Marandi S, Kelishadi R, Heidari K. Children, obesity and exercise: Medical Sciences of Isfahan University publication; 2016; (2)102-107.
  21. Racil G, Ben Ounis O, Hammouda O, Kallel A, Zouhal H, Chamari K, et al. Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. European Journal of Applied Physiology. 2013; 113: 2531–2540.
  22. Matsuzaka A, Takahashi Y, Yamazoe M, Kumakura N, Ikeda A, Wilk B, et al. Validity of the Multistage 20-M Shuttle-Run Test for Japanese Children, Adolescents, and Adults. Pediatric exercise science. 2004;16(2):113-25
  23. Tartibain B, Azadpour N, Ebrahemi-Torkmani B. The relationship between serum levels of adiponectin, leptin, cholesterol, triglyceride and body mass index in the overweight girls after 12-week moderate intensity aerobic exercise training. Scientific Research Journal of Shahed. 2017;128.
  24. Sharma M, Juvvuna P, Kukreti H, McFarlane C. Mega roles of microRNAs in regulation of skeletal muscle health and disease. Front Physiol. 2014;5:239.
  25. Rodrigo WA, Geysson J, João p, Warlen P. Regulation of cardiac microRNAs induced by aerobic exercise training during heart failure. Am J Physiol Heart Circ Physiol 2015;309.
  26. Xi s, Jiang y, Qui y, Huang w, Wang j. Role of diets and exercise in ameliorating obesity-related hepatic steatosis: Insights at the microRNA-dependent thyroid hormone synthesis and action. Life Sciences. 2020;242:117182.
  27. Zacharewicz E, Lamon S, P.Russell A. MicroRNAs in skeletal muscle and their regulation with exercise, ageing, anddisease. FrontiersinPhysiology. 2013;4:1-11.
  28. Fluck M, Hoppeler H. Molecular basis of skeletal muscle plasticity-from gene to form and function. Rev Physiol Biochem Pharmacol. 2003;146:159-216.
  29. Polakovi cova M, Musil P, Laczo E, Hamar D, Kyselovi J. Circulating MicroRNAs as Potential Biomarkers of Exercise Response. J Mol Sci. 2016;17:1553.
  30. Thomou T, Mori M, Dreyfuss J, Konishi M, Sakaguchi M, Wolfrum C. Adipose-derived circulating miRNAs regulate gene expression in other tissues. Nature. 2017;542:450–5.
  31. Spalding K, Arner E, Westermark P, Bernard S, Buchholz B, Bergmann O. Dynamics of fat cell turnover in humans. Nature. 2008;453:783-7.
  32. Gomes C, Oliveira-Jr G, Madrid B, Almeida J, Franco O, Pereira R. Circulating miR-1, miR-133a, and miR-206 levels are increased after a half-marathon run. Biomarkers. 2014;19:585-9.
  33. Ryan M, Sapp Daniel D, Shill Stephen M, James M. Circulating microRNAs in acute and chronic exercise: more than mere biomarkers. J Appl Physiol. 2017;122:702-17.
  34. Aoi W, Ichikawa H, Mune K, Tanimura Y, Mizushima K, Naito Y, et al. Muscle-enriched microRNA miR-486 decreases in circulation in response to exercise in young men. Front Physiol. 2013;4:80.
  35. Kim E, Im J, Kim K, Park J, Suh S, Kang E. Improved insulin sensitivity and adiponectin level after exercise training in obese Korean youth. Obesity. 2007;15:3023-30.
  36. Romero-Moraleda B, Morencos E, Peinado A, Bermejo L, Gomez-Candela C, Benito PJ. Can the exercise mode determine lipid profile improvements in obese patients. Nutr Hosp. 2013;28(3):607-17.
  37. Parente E, Guazzelli I, Ribeiro M, Silva A, Halpern A, Villares S. Obese children lipid profile: effects of hypocaloric diet and aerobic physical exercise. Arq Bras Endocrinol Metabol. 2006;50(3):499-504.
  38. Lambers S, Van Laethem C, Van
    Acker K, Calders P. Influence of combined exercise training on indices of obesity, diabetes and cardiovascular risk in type 2 diabetes patients. Clin Rehabil. 2008;22(6):483-92.
  39. Cauza E, Hanusch-Enserer U, Strasser B, Ludvik B, Metz-Schimmerl S. The relative benefits of endurance and strength training on the metabolic factors and muscle function of people with type 2 diabetes mellitus. Arch Phys Med Rehabil. 2005;86(8):1527-33.
  40. Fernandes T, Magalhaes F, Roque F, Phillips M, Oliveira E. Exercise training prevents the microvascular rarefaction in hypertension balancing angiogenic and apoptotic factors: role of microRNAs 16, 21, and 126. Hypertension. 2012;59(2):513-20.