نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجو دکتری، گروه مهندسی شیمی، دانشکده مهندسی نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران
2 دانشیار، عضو هیئتعلمی، گروه مهندسی شیمی، دانشکده مهندسی نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران
3 استاد، عضو هیئتعلمی، گروه مهندسی شیمی، دانشکده مهندسی نیکبخت، دانشگاه سیستان و بلوچستان، زاهدان، ایران
4 استادیار، گروه کیفیت و ایمنی مواد غذایی، پژوهشکده علوم و صنایع غذایی، جهاد دانشگاهی، دانشگاه فردوسی مشهد، مشهد، ایران
چکیده
مقدمه: یکی از دلایل اصلی عفونتهای ادراری استفاده از کاتترهای ادراری میباشد. باگذشت زمان و استفاده بیرویه از آنتیبیوتیکهای شیمیایی باکتریها نسبت به درمان شیمیایی مقاوم شدهاند؛ بنابراین بیشترین چالش بیمارستانها جلوگیری از عفونت ادراری و جایگزین مناسب برای آنتیبیوتیکهای شیمیایی میباشد. محققان بر روی گیاهان دارویی بهعنوان جایگزین مناسب برای آنتیبیوتیکهای شیمیایی پرداختهاند.
روشها: در این پژوهش از عصاره گیاهی چای سبز و کاکوتی بهعنوان عامل آنتی باکتریال برای آنتی باکتریال و آنتی بیوفیلم کردن کاتتر لاتکس پوشش دادهشده با سیلیکون با روش تلقیح استفادهشده است. تستهای دیسک دیفیوژن، نفوذ در براث، زاویه تماس، FE-SEM، AFM، ATR-FTIR، تست کشش انجام شد.
یافتهها: بعد از تلقیح تست دیسک دیفیوژن بر روی باکتریهای اشرشیاکلی و استافیلوکوکوس اورئوس عامل عفونت ادراری انجام شد و خاصیت آنتی باکتریال کاتتر تائید شد. نتایج حاصل از تست نفوذ در براث طی مدت 21 روز (P≤0.0001) نشاندهنده کاهش باکتریها طی گذر زمان بوده است. تست زاویه تماس افزایش خاصیت هیدروفیلیکی کاتتر ها بعد از اصلاح نشان داد (P≤0.0002). تست مکانیکی نشاندهنده افزایش مدول یانگ میباشد. تست SEM نشان کاهش چسبندگی باکتری بر سطح کاتتر است. تست AFM نشان از افزایش زبری بعد از اصلاح داد. وجود عصاره درون کاتترها به ATR-FTIR تائید شد.
نتیجه گیری: از نتایج حاصل میتوان گفت گیاهان دارویی میتواند عامل مناسب برای تلقیح کاتترهای ادراری و کاهش عفونت ادراری در بیمارستانها باشد توانایی از بین بردن باکتریها را دارد. عصارههای گیاهی میتوانند عامل مناسبی برای جایگزینی آنتیبیوتیکهای شیمیایی باشند. همچنین عصارهها خاصیت آبدوستی سطح را افزایش داده و مانع چسبندگی باکتری و خاصیت ضد بیوفیلیمی میباشد.
کلیدواژهها
- Darouiche RO, Hampel OZ, Boone TB, Raad II. Antimicrobial activity and durability of a novel antimicrobial-impregnated bladder catheter. International Journal of Antimicrob Agents. 1997;8:243-7. https://doi.org/10.1016/S0924-8579(97)00015-0.
- Haley RW, Hooton TM, Culver DH, Stanley RC, Emori TG, Hardison CD, etal. Nosocomial infections in US hospitals, 1975–1976: estimated frequency by selected characteristics of patients. The American journal of medicine. 1981;70:947-59. https://doi.org/10.1016/0002-9343(81)90561-1.
- Abbo L, Hooton T. Antimicrobial stewardship and urinary tract infections. Antibiotics. 2014;3:174-92. https://doi.org/10.3390/antibiotics3020174.
- Kowalczuk D, Ginalska G, Golus J. Characterization of the developed antimicrobial urological catheters. International journal of pharmaceutics. 2010;402:175-83. https://doi.org/10.1016/j.ijpharm.2010.10.014.
- Lawrence E, Turner I. Materials for urinary catheters: a review of their history and development in the UK. Medical engineering & physics. 2005;27:443-53. https://doi.org/10.1016/j.medengphy.2004.12.013.
- Tenke P, Mezei T, Bőde I, Köves B. Catheter-associated urinary tract infections. European urology supplements. 2017;16:138-43. http://doi.org/101016/j.eursup.2016. 10.001.
- Donlan RM. Biofilms: microbial life on surfaces. Emerging infectious diseases. 2002;8:881. http://doi.org/10.3201/eid0809.020063.
- Branda SS, Vik Å, Friedman L, Kolter R. Biofilms: the matrix revisited. Trends in microbiology. 2005;13:20-6. https://doi.org/10.1016/j.tim.2004.11.006.
- Bjarnsholt T. Introduction to biofilms. Biofilm Infections: Springer; 2011. p. 1-9.
- Okada M, Sato I, Cho SJ, Iwata H, Nishio T, Dubnau D, et al. Structure of the bacillus subtilis quorum-sensing peptide pheromone comX. Nature chemical biology 2005;1:23-4. https://doi.org/10.1038/nchembio709.
- Vergidis P, Patel R. Novel approaches to the diagnosis, prevention, and treatment of medical device-associated infections. Infectious disease clinics. 2012;26:173-86. https://doi.org/10.1016/j.idc.2011.09.012.
- Tenke P, Köves B, Nagy K, Hultgren SJ, Mendling W, Wullt B, et al. Update on biofilm infections in the urinary tract. World journal of urology. 2012;30:51-7. https://doi.org/10.1007/s00345-011-0689-9.
- Lazãr V, Chifiriuc MC. Architecture and physiology of microbial biofilms. Romanian Archives of Microbiology and Immunology. 2010;69:95-07.
- Stickler DJ. Bacterial biofilms in patients with indwelling urinary catheters. Nature clinical practice urology. 2008;5:598-08. https://doi.org/10.1038/ncpuro1231.
- Tannock GW.The bowel microflora: an important source of urinary tract pathogens. World journal of urology. 1999;17:339-44. https://doi.org/10.1007/s003450050158.
- Stamm WE. Catheter-associated urinary tract infections: epidemiology, pathogenesis, and prevention.The American journal of medicine.1991;91:S65-S71. https://doi.org/10.1016/0002-9343(91)90345-X.
- Galiczewski JM. Interventions for the prevention of catheter associated urinary tract infections in intensive care units: an integrative review. Intensive and Critical Care Nursing. 2016;32:1-11. https://doi.org/10.1016/j.iccn.2015.08.007.
- Francolini I, Donelli G. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunology & Medical Microbiology. 2010;59:227-38. https://doi.org/10.1111/j.1574-695X.2010.00665.x.
- Stepanović S, Vuković D, Ješić M, Ranin L. Influence of acetylsalicylic acid (aspirin) on biofilm production by Candida species. Journal of chemotherapy. 2004;16:134-8. https://doi.org/10.1179/joc.2004.16.2.134.
- Reid G, Habash M, Vachon D, Denstedt J, Riddell J, Beheshti .Oral fluoroquinolone therapy results in drug adsorption on ureteral stents and prevention of biofilm formation. International journal of antimicrobial agents. 2001;17:317-20. https://doi.org/10.1016/S0924-8579(00)00353-8.
- Sofer M, Denstedt JD. Encrustation of biomaterials in the urinary tract. Current opinion in urology. 2000;10:563-9.
- Chao Y, Marks LR, Pettigrew MM, Hakansson AP. Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease. Frontiers in cellular and infection microbiology. 2015;4:194. https://doi.org/10.3389/fcimb.2014.00194.
- Moriarty TF, Zaat SA, Busscher H J. Biomaterials associated infection: immunological aspects and antimicrobial strategies: Springer Science & Business Media; 2012.
- Srinivasa Reddy P, Jamil K, Madhusudhan P, Anjani G, Das B. Antibacterial activity of isolates from Piper longum and Taxus baccata. Pharmaceutical biology. 2001;39:236-8. https://doi.org/10.1076/phbi.39.3.236.5926.
- Pietta PG. Flavonoids as antioxidants. Journal of Natural Products. 2000;63:1035-42. https://doi.org/10.1021/np9904509.
- Johnson R, Bryant S, Huntley AL. Green tea and green tea catechin extracts: an overview of the clinical evidence. Maturitas. 2012;73:280-7. https://doi.org/10.1016/j.maturitas.2012.08.008.
- Anzabi Y, Khaki A. Antibacterial activity of ziziphora tenuior lam extract and essential oil against bacteria isolated from urogenital tract infections. Medical Laboratory Journal. 2016;10:54-59. https://doi.org/10.18869/acadpub.mlj.10.6.54.
- Amr S, Bollinger ME. Latex allergy and occupational asthma in health care workers: adverse outcomes. Environmental health perspectives. 2004;112:378-81.
- Seidel A. Encyclopedia of polymer science and technology: Wiley; 2014.
- Daniels CA. Polymers: structure and properties: CRC Press; 1989.
- Park J, Lakes RS. Biomaterials: an introduction: Springer; Science & Business Media; 2007.
- Rodrigues L. Van Der Mei H, Banat IM, Teixeira J, Oliveira R. Inhibition of microbial adhesion to silicone rubber treated with biosurfactant from Streptococcus thermophilus A. FEMS Immunology & Medical Microbiolog. 2006;46:107-12. https://doi.org/10.1111/j.1574-695X.2005.00006.x.
- Lee JN, Park C, Whitesides GM. Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices. Analytical chemistry. 2003;75:6544-54. https://doi.org/10.1021/ac0346712.
- Danese PN. Antibiofilm approaches: prevention of catheter colonization. Chemistry & biology. 2002;9:873-80. https://doi.org/10.1016/S1074-5521(02)00192-8.
- Bhalodia NR, Shukla V. Antibacterial and antifungal activities from leaf extracts of Cassia fistula l.: An ethnomedicinal plant. Journal of advanced pharmaceutical technology & research. 2011;2:104. https://doi.org/10.4103/2231-4040.82956.
- Fisher LE, Hook.L, Ashraf W, Yousef A, Barrett DA, Scurr DJ, et al. Biomaterial modification of urinary catheters with antimicrobials to give long-term broadspectrum antibiofilm activity. Journal of Controlled Release. 2015;202:57-64. https://doi.org/10.1016/j.jconrel.2015.01.037
- Wiegand I, Hilpert K, Hancock RE. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Journal of Nature protocols. 2008;3:163. https://doi.org/10.1038/nprot.2007.521.
- Slane J, Vivanco J, Rose Ploeg HL, Squire M. Mechanical, material, and antimicrobial properties of acrylic bone cement impregnated with silver nanoparticles. Materials Science and Engineering: C. 2015;48:188-96. https://doi.org/10.1016/j.msec.2014.11.068.
- Carberry BJ, Farrell J, Kennedy JE. Evaluation and characterisation of urinary catheter coating utilising Hansen solubility parameters and FEA analysis. Surface and Coatings Technology. 2015;276:456-63. https://doi.org/10.1016/j.surfcoat.2015.06.029.
- Tenke P, Riedl CR, Jones GL, Williams GJ, Stickler D, Nagy E. Bacterial biofilm formation on urologic devices and heparin coating as preventive strategy. International journal of antimicrobial agents. 2004;23:67-74. http//doi.org/10.1016/j.ijantimicag.2003.12.007.
- Pollini M, Paladini F, Catalano M, Taurino A, Licciulli A, Maffezzoli A, et al. Antibacterial coatings on haemodialysis catheters by photochemical deposition of silver nanoparticles. Journal of Materials Science: Materials in Medicine. 2011;22:2005-12. https://doi.org/10.1007/s10856-011-4380-x.
- Gadkari PV, Balaraman M.Catechins: Sources, extraction and encapsulation: A review. Food and Bioproducts Processing. 2015;93:122-38. https://doi.org/10.1016/j.fbp.2013.12.004.
- Kim YW, Chun HJ, Kim IW, Liu HB, Ahn WS. Retracted Article: Antimicrobial and antifungal effects of green tea extracts against microorganisms causing vaginitis. Food Science and Biotechnology. 2013;22:713-9. https://doi.org/10.1007/s10068-013-0136-3.
- Aghamohammadi A, Azadbakht M, Hosseinimehr SJ. Quantification of thymol content in different extracts of Zataria multiflora by HPLC method. Pharmaceutical and Biomedical Research. 2016;8-13. http://doi.org/10.18869/acadpub.pbr.2.1.8.
- Ignasimuthu K, Prakash R, Murthy PS, Subban N. Enhanced bioaccessibility of green tea polyphenols and lipophilic activity of EGCG octaacetate on gram-negative bacteria. L.W.T. 2019;105:103-9. https://doi.org/10.1016/j.lwt.2019.01.064.
- Senthilkumar S, Sivakumar T. Green tea (Camellia sinensis) mediated synthesis of zinc oxide (ZnO) nanoparticles and studies on their antimicrobial activities International Journal of Pharmacy and Pharmaceutical Sciences. 2014;6:461-5.
- Oliveira RN, Mancini MC, Oliveira FCSd, Passos TM. Quilty B Thiré R M d S M et al. FTIR analysis and quantification of phenols and flavonoids of five commercially available plants extracts used in wound healing. FEMS Immunology & Medical Microbiology. 2016;21:767-79. https://doi.org/10.1590/S1517-707620160003.0072.
- Valderrama ACSDeGCR. Traceability of Active Compounds of Essential Oils in Antimicrobial Food Packaging Using a Chemometric Method by ATR-FTIR. American Journal of Analytical Chemistry. 2017;8:726-41. https://doi.org/10.4236/ajac.2017.811053.
- Miller-Chou BA, Koenig JL. A review of polymer dissolution. Progress in Polymer Science. 2003;28:1223-70. https://doi.org/10.1016/S0079-6700(03)00045-5.